Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biol Rev Camb Philos Soc ; 95(4): 847-864, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32092241

RESUMO

Papers on sexual selection often highlight the incredible diversity of sexually selected traits across animals. Yet, few studies have tried to explain why this diversity evolved. Animals use many different types of traits to attract mates and outcompete rivals, including colours, songs, and horns, but it remains unclear why, for example, some taxa have songs, others have colours, and others horns. Here, we first conduct a systematic survey of the basic diversity and distribution of different types of sexually selected signals and weapons across the animal Tree of Life. Based on this survey, we describe seven major patterns in trait diversity and distributions. We then discuss 10 unanswered questions raised by these patterns, and how they might be addressed. One major pattern is that most types of sexually selected signals and weapons are apparently absent from most animal phyla (88%), in contrast to the conventional wisdom that a diversity of sexually selected traits is present across animals. Furthermore, most trait diversity is clustered in Arthropoda and Chordata, but only within certain clades. Within these clades, many different types of traits have evolved, and many types appear to have evolved repeatedly. By contrast, other major arthropod and chordate clades appear to lack all or most trait types, and similar patterns are repeated at smaller phylogenetic scales (e.g. within insects). Although most research on sexual selection focuses on female choice, we find similar numbers of traits (among sampled species) are involved in male contests (44%) and female choice (55%). Overall, these patterns are largely unexplained and unexplored, as are many other fundamental questions about the evolution of these traits. We suggest that understanding the diversity of sexually selected traits may require a shift towards macroevolutionary studies at relatively deep timescales (e.g. tens to hundreds of millions of years ago).


Assuntos
Artrópodes/fisiologia , Biodiversidade , Evolução Biológica , Cordados/fisiologia , Preferência de Acasalamento Animal/fisiologia , Animais , Artrópodes/classificação , Cordados/classificação , Feminino , Cornos , Masculino , Preferência de Acasalamento Animal/classificação , Filogenia , Pigmentação , Vocalização Animal
2.
BMC Evol Biol ; 20(1): 24, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046633

RESUMO

BACKGROUND: Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. RESULTS: An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in ß-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. CONCLUSION: Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.


Assuntos
Cordados/classificação , Cordados/genética , Evolução Molecular , Especiação Genética , Variação Genética/fisiologia , Animais , Evolução Biológica , Cetáceos/classificação , Cetáceos/genética , Duplicação Gênica/fisiologia , Genes Duplicados , Genoma , Genômica , Filogenia
3.
G3 (Bethesda) ; 9(10): 3359-3367, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31451549

RESUMO

MDM2 regulates a variety of cellular processes through its dual protein:protein interaction and ubiquitin ligase activities. One major function of MDM2 is to bind and ubiquitinate P53, thereby regulating its proteasomal degradation. This function is in turn controlled by the cell fate determinant NUMB, which binds to and inhibits MDM2 via a short stretch of 11 amino acids, contained in its phosphotyrosine-binding (PTB) domain, encoded by exon 3 of the NUMB gene. The NUMB-MDM2-P53 circuitry is relevant to the specification of the stem cell fate and its subversion has been shown to be causal in breast cancer leading to the emergence of cancer stem cells. While extensive work on the evolutionary aspects of the MDM2/P53 circuitry has provided hints as to how these two proteins have evolved together to maintain conserved and linked functions, little is known about the evolution of the NUMB gene and, in particular, how it developed the ability to regulate MDM2 function. Here, we show that NUMB is a metazoan gene, which acquired exon 3 in the common ancestor of the Chordate lineage, first being present in the Cephalochordate and Tunicate subphyla, but absent in invertebrates. We provide experimental evidence showing that since its emergence, exon 3 conferred to the PTB domain of NUMB the ability to bind and to regulate MDM2 functions.


Assuntos
Cordados/classificação , Cordados/genética , Éxons , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Evolução Molecular , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/química , Relação Estrutura-Atividade
4.
Curr Biol ; 29(11): 1818-1826.e6, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31104936

RESUMO

Xenoturbella and the acoelomorph worms (Xenacoelomorpha) are simple marine animals with controversial affinities. They have been placed as the sister group of all other bilaterian animals (Nephrozoa hypothesis), implying their simplicity is an ancient characteristic [1, 2]; alternatively, they have been linked to the complex Ambulacraria (echinoderms and hemichordates) in a clade called the Xenambulacraria [3-5], suggesting their simplicity evolved by reduction from a complex ancestor. The difficulty resolving this problem implies the phylogenetic signal supporting the correct solution is weak and affected by inadequate modeling, creating a misleading non-phylogenetic signal. The idea that the Nephrozoa hypothesis might be an artifact is prompted by the faster molecular evolutionary rate observed within the Acoelomorpha. Unequal rates of evolution are known to result in the systematic artifact of long branch attraction, which would be predicted to result in an attraction between long-branch acoelomorphs and the outgroup, pulling them toward the root [6]. Other biases inadequately accommodated by the models used can also have strong effects, exacerbated in the context of short internal branches and long terminal branches [7]. We have assembled a large and informative dataset to address this problem. Analyses designed to reduce or to emphasize misleading signals show the Nephrozoa hypothesis is supported under conditions expected to exacerbate errors, and the Xenambulacraria hypothesis is preferred in conditions designed to reduce errors. Our reanalyses of two other recently published datasets [1, 2] produce the same result. We conclude that the Xenacoelomorpha are simplified relatives of the Ambulacraria.


Assuntos
Evolução Biológica , Invertebrados/classificação , Filogenia , Animais , Cordados/classificação , Equinodermos/classificação , Invertebrados/anatomia & histologia
5.
Cell Mol Life Sci ; 76(20): 4117-4130, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31028425

RESUMO

Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.


Assuntos
Evolução Biológica , Cordados/genética , Genoma , Família Multigênica , Filogenia , Proteínas rab de Ligação ao GTP/genética , Animais , Transporte Biológico , Cordados/classificação , Bases de Dados Genéticas , Éxons , Duplicação Gênica , Variação Genética , Humanos , Íntrons , Organelas/genética , Organelas/metabolismo , Domínios Proteicos , Sintenia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
6.
Biol Rev Camb Philos Soc ; 92(1): 316-325, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26486096

RESUMO

The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the 'new' mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the 'ventral' side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Cordados/classificação , Cordados/embriologia , Animais
7.
Rev. biol. trop ; 64(4): 1469-1486, oct.-dic. 2016. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-958227

RESUMO

Resumen:A pesar de la gran importancia ecológica, evolutiva y económica de los condrictios, su diversidad ha sido escasamente estudiada en México. En este estudio se describe la diversidad de especies de condrictios que se han registrado hasta el momento para México, la cual se compone de 214 especies (111 tiburones, 95 rayas y 8 quimeras) y representa el 17.3 % de las registradas a nivel mundial. Las familias con mayor diversidad de especies son Rajidae (14.5 %), Carcharhinidae (12.1 %), Pentanchidae, Triakidae y Urotrygonidae (5.1 %). En términos de su distribución geográfica, la diversidad del litoral del Pacífico mexicano contiene el 56.1 % del total de aquellas que habitan en las aguas marinas y salobres de México (120 spp., 62 géneros, 37 familias y 14 órdenes); porcentaje muy similar a las que habitan en el litoral del Atlántico con el 55.1 % de las especies (118 especies, 59 géneros, 35 familias y 13 órdenes). Las afinidades biogeográficas de la fauna de condrictios mexicanos son complejas, pues 19.7 % de las especies son circunglobales, 9.9 % trasatlánticas, 1.9 % transpacíficas y 9.4 % son endémicas de la zona económica exclusiva. Además, el 36.6 % de las especies son endémicas del Pacífico oriental, presentan mayor afinidad a la provincia de Cortés (27.7 %), seguida de la de California (20.7 %), Panamá (19.3 %), Galápagos (5.6 %) y Peruano-Chilena (8.9 %). Así mismo, el 33.3 % de las especies son endémicas del Atlántico occidental donde tienen mayor afinidad con la provincia Caribeña (31.9 %), seguido por la Caroliniana (24.4 %) y Brasileña (6.6 %).


Abstract:The diversity of chondrychthyans in Mexico is described. The fauna is composed by 214 species (111 sharks, 95 rays and 8 chimaeras) and represents 17.3 % of the total number of species recorded worldwide. The families with the highest diversity comprise: Rajidae (14.5 %), Carcharhinidae (12.1 %), Pentanchidae, Triakidae, and Urotrygonidae (5.1 %). In terms of geographical distribution, the diversity on the Mexican Pacific slope reaches up to 56.1 % of those species inhabiting Mexican marine and brackish waters (120 species, 62 genera, 37 families and 14 orders); the diversity in the Atlantic slope resulted similar to that on the Mexican Pacific with 55.1 % of the species (118 species, 59 genera, 35 families and 13 orders). The biogeographical affinities of the Mexican chondrychthyan fauna are complex with 19.7 % of the species being circumglobal, 9.9 % transatlantic, 1.9 % transpacific, and 9.4 % endemic to the exclusive economic zone. Additionally, 36.6 % of the species recorded so far are endemic to the Eastern Pacific coast where the species are similar to those found in the Cortez biogeographic province (27.7 %), followed by the Californian (20.7 %), Panamanian (19.3 %), Galapagos (5.6 %) and Peruvian-Chilean (8.9 %). Likewise, 33.3 % are endemic of the Atlantic coast, where species are similar to those found in the Caribbean province (31.9 %), followed by the Carolinean (24.4 %) and the Brazilian (6.6 %). Rev. Biol. Trop. 64 (4): 1469-1486. Epub 2016 December 01.


Assuntos
Animais , Tubarões/classificação , Rajidae/classificação , Cordados/classificação , Biodiversidade , Distribuição Animal , Tubarões/fisiologia , Especificidade da Espécie , Oceano Atlântico , Oceano Pacífico , Rajidae/fisiologia , Cordados/fisiologia , México
8.
PLoS One ; 11(10): e0162945, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706191

RESUMO

We describe two new cynodonts from the early Late Triassic of southern Brazil. One taxon, Bonacynodon schultzi gen. et sp. nov., comes from the lower Carnian Dinodontosaurus AZ, being correlated with the faunal association at the upper half of the lower member of the Chañares Formation (Ischigualasto-Villa Unión Basin, Argentina). Phylogenetically, Bonacynodon is a closer relative to Probainognathus jenseni than to any other probainognathian, bearing conspicuous canines with a denticulate distal margin. The other new taxon is Santacruzgnathus abdalai gen. et sp. nov. from the Carnian Santacruzodon AZ. Although based exclusively on a partial lower jaw, it represents a probainognathian close to Prozostrodon from the Hyperodapedon AZ and to Brasilodon, Brasilitherium and Botucaraitherium from the Riograndia AZ. The two new cynodonts and the phylogenetic hypothesis presented herein indicate the degree to which our knowledge on probainognathian cynodonts is incomplete and also the relevance of the South American fossil record for understanding their evolutionary significance. The taxonomic diversity and abundance of probainognathians from Brazil and Argentina will form the basis of deep and complex studies to address the evolutionary transformations of cynodonts leading to mammals.


Assuntos
Cordados/anatomia & histologia , Fósseis , Animais , Brasil , Cordados/classificação , Arco Dental/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
9.
Dev Dyn ; 245(12): 1159-1175, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649280

RESUMO

BACKGROUND: Head or anterior body part regeneration is commonly associated with protostome, but not deuterostome invertebrates. However, it has been shown that the solitary hemichordate Ptychodera flava possesses the remarkable capacity to regenerate their entire nervous system, including their dorsal neural tube and their anterior head-like structure, or proboscis. Hemichordates, also known as acorn worms, are marine invertebrate deuterostomes that have retained chordate traits that were likely present in the deuterostome ancestor, placing these animals in a vital position to study regeneration and chordate evolution. All acorn worms have a tripartite body plan, with an anterior proboscis, middle collar region, and a posterior trunk. The collar houses a hollow, dorsal neural tube in ptychoderid hemichordates and numerous chordate genes involved in brain and spinal cord development are expressed in a similar anterior-posterior spatial arrangement along the body axis. RESULTS: We have examined anterior regeneration in the hemichordate Ptychodera flava and report the spatial and temporal morphological changes that occur. Additionally, we have sequenced, assembled, and analyzed the transcriptome for eight stages of regenerating P. flava, revealing significant differential gene expression between regenerating and control animals. CONCLUSIONS: Importantly, we have uncovered developmental steps that are regeneration-specific and do not strictly follow the embryonic program. Developmental Dynamics 245:1159-1175, 2016. © 2016 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Cordados/fisiologia , Animais , Evolução Biológica , Cordados/anatomia & histologia , Cordados/classificação , Filogenia , Regeneração/fisiologia
10.
Rev Biol Trop ; 64(4): 1469-86, 2016 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-29465910

RESUMO

The diversity of chondrychthyans in Mexico is described. The fauna is composed by 214 species (111 sharks, 95 rays and 8 chimaeras) and represents 17.3 % of the total number of species recorded worldwide. The families with the highest diversity comprise: Rajidae (14.5 %), Carcharhinidae (12.1 %), Pentanchidae, Triakidae, and Urotrygonidae (5.1 %). In terms of geographical distribution, the diversity on the Mexican Pacific slope reaches up to 56.1 % of those species inhabiting Mexican marine and brackish waters (120 species, 62 genera, 37 families and 14 orders); the diversity in the Atlantic slope resulted similar to that on the Mexican Pacific with 55.1 % of the species (118 species, 59 genera, 35 families and 13 orders). The biogeographical affinities of the Mexican chondrychthyan fauna are complex with 19.7 % of the species being circumglobal, 9.9 % transatlantic, 1.9 % transpacific, and 9.4 % endemic to the exclusive economic zone. Additionally, 36.6 % of the species recorded so far are endemic to the Eastern Pacific coast where the species are similar to those found in the Cortez biogeographic province (27.7 %), followed by the Californian (20.7 %), Panamanian (19.3 %), Galapagos (5.6 %) and Peruvian-Chilean (8.9 %). Likewise, 33.3 % are endemic of the Atlantic coast, where species are similar to those found in the Caribbean province (31.9 %), followed by the Carolinean (24.4 %) and the Brazilian (6.6 %).


Assuntos
Distribuição Animal , Biodiversidade , Cordados/classificação , Tubarões/classificação , Rajidae/classificação , Animais , Oceano Atlântico , Cordados/fisiologia , México , Oceano Pacífico , Tubarões/fisiologia , Rajidae/fisiologia , Especificidade da Espécie
11.
Gene ; 575(2 Pt 2): 385-392, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26361847

RESUMO

The ancient Sox gene family is a group of related transcription factors that perform a number of essential functions during embryonic development. During evolution, this family has undergone considerable expansion, particularly within the vertebrate lineage. In vertebrates SOX proteins are required for the specification, development and/or morphogenesis of most vertebrate innovations. Tunicates and lancelets are evolutionarily positioned as the closest invertebrate relatives to the vertebrate group. By identifying their Sox gene complement we can begin to reconstruct the gene set of the last common chordate ancestor before the split into invertebrates and vertebrate groups. We have identified core SOX family members from the genomes of six invertebrate chordates. Using phylogenetic analysis we determined their evolutionary relationships. We propose that the last common ancestor of chordates had at least seven Sox genes, including the core suite of SoxB, C, D, E and F as well as SoxH.


Assuntos
Cordados/classificação , Cordados/metabolismo , Fatores de Transcrição SOX/genética , Animais , Sequência de Bases , Cordados/genética , Sequência Conservada , Evolução Molecular , Invertebrados/genética , Invertebrados/metabolismo , Família Multigênica , Filogenia , Vertebrados/genética , Vertebrados/metabolismo
12.
Genet Mol Res ; 14(4): 12561-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26505406

RESUMO

MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.


Assuntos
Cordados/genética , Evolução Molecular , Proteína MyoD/genética , Fatores de Regulação Miogênica/genética , Animais , Diferenciação Celular , Cordados/classificação , Bases de Dados de Proteínas , Humanos , Filogenia , Análise de Sequência de Proteína
14.
Nature ; 520(7548): 456-65, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903627

RESUMO

Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.


Assuntos
Cordados/anatomia & histologia , Cordados/embriologia , Filogenia , Animais , Padronização Corporal , Cordados/classificação , Endoderma/embriologia , Brânquias/anatomia & histologia , Brânquias/embriologia , Mesoderma/embriologia
15.
Nature ; 520(7548): 483-9, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903630

RESUMO

The interrelationships between major living vertebrate, and even chordate, groups are now reasonably well resolved thanks to a large amount of generally congruent data derived from molecular sequences, anatomy and physiology. But fossils provide unexpected combinations of characters that help us to understand how the anatomy of modern groups was progressively shaped over millions of years. The dawn of vertebrates is documented by fossils that are preserved as either soft-tissue imprints, or minute skeletal fragments, and it is sometimes difficult for palaeontologists to tell which of them are reliable vertebrate remains and which merely reflect our idea of an ancestral vertebrate.


Assuntos
Cordados/anatomia & histologia , Cordados/classificação , Fósseis , Filogenia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais
16.
Mol Biol Evol ; 32(2): 299-312, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25415965

RESUMO

An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.


Assuntos
Encéfalo/anatomia & histologia , Cordados/anatomia & histologia , Animais , Evolução Biológica , Cordados/classificação , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Filogeografia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/classificação
17.
Curr Biol ; 24(23): 2827-32, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454590

RESUMO

Ambulacraria, comprising Hemichordata and Echinodermata, is closely related to Chordata, making it integral to understanding chordate origins and polarizing chordate molecular and morphological characters. Unfortunately, relationships within Hemichordata and Echinodermata have remained unresolved, compromising our ability to extrapolate findings from the most closely related molecular and developmental models outside of Chordata (e.g., the acorn worms Saccoglossus kowalevskii and Ptychodera flava and the sea urchin Strongylocentrotus purpuratus). To resolve long-standing phylogenetic issues within Ambulacraria, we sequenced transcriptomes for 14 hemichordates as well as 8 echinoderms and complemented these with existing data for a total of 33 ambulacrarian operational taxonomic units (OTUs). Examination of leaf stability values revealed rhabdopleurid pterobranchs and the enteropneust Stereobalanus canadensis were unstable in placement; therefore, analyses were also run without these taxa. Analyses of 185 genes resulted in reciprocal monophyly of Enteropneusta and Pterobranchia, placed the deep-sea family Torquaratoridae within Ptychoderidae, and confirmed the position of ophiuroid brittle stars as sister to asteroid sea stars (the Asterozoa hypothesis). These results are consistent with earlier perspectives concerning plesiomorphies of Ambulacraria, including pharyngeal gill slits, a single axocoel, and paired hydrocoels and somatocoels. The resolved ambulacrarian phylogeny will help clarify the early evolution of chordate characteristics and has implications for our understanding of major fossil groups, including graptolites and somasteroideans.


Assuntos
Cordados não Vertebrados/genética , Filogenia , Animais , Evolução Biológica , Cordados/classificação , Cordados/genética , Cordados não Vertebrados/classificação , Funções Verossimilhança , Transcriptoma
18.
Proc Natl Acad Sci U S A ; 111(46): 16419-24, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25331898

RESUMO

Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis/anatomia & histologia , Especiação Genética , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Artrópodes/genética , Cordados/anatomia & histologia , Cordados/classificação , Cordados/genética , Simulação por Computador , Equinodermos/anatomia & histologia , Equinodermos/classificação , Equinodermos/genética , Invertebrados/anatomia & histologia , Invertebrados/classificação , Invertebrados/genética , Modelos Genéticos , Moluscos/anatomia & histologia , Moluscos/classificação , Moluscos/genética , Filogenia , Especificidade da Espécie
19.
BMC Evol Biol ; 14: 214, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25273382

RESUMO

BACKGROUND: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved. RESULTS: A new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity. CONCLUSIONS: Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions - the former being non-fusiform and used for filter feeding and the latter originally segmented - plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail.


Assuntos
Cordados/classificação , Cordados/genética , Fósseis , Animais , Austrália , Evolução Biológica , Cordados/anatomia & histologia , Brânquias/anatomia & histologia , Filogenia , Urocordados/classificação , Urocordados/genética
20.
Genesis ; 52(12): 925-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25303744

RESUMO

As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group "hemichordates." Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord-forming region in acorn worm juveniles is expressed in the club-shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord.


Assuntos
Evolução Biológica , Cordados/anatomia & histologia , Cordados/genética , Notocorda/crescimento & desenvolvimento , Faringe/crescimento & desenvolvimento , Animais , Cordados/classificação , Endoderma/metabolismo , Proteínas Fetais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mucosa Gástrica/metabolismo , Notocorda/metabolismo , Faringe/metabolismo , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...